BİLKENT UNIVERSITY

DEPARTMENT OF COMPUTER TECHNOLOGY AND PROGRAMMING

CTP203 Operating Systems

Spring 1999-2000

LAB ASSIGNMENT # 1

Instructor
: Can Uğur AYFER

Assistant
: Ece YARGI
Date
: 14/02/00

Week
: 2

1. Logon to gunes.ctp.bilkent.edu.tr or temel.ctp.bilkent.edu.tr or any other UNIX host you know.

2. Check who else is using the system. (Hint : who command – type “man who” for details)

3. Check and note your working directory (the pwd command). This is your “home” directory the directory the system puts you in when you first logon.

4. Create a directory called ctp203 in your home directory. (mkdir command).

5. Copy files from /bin whose names start with w to this new ctp203 directory.

6. Copy these files to /usr/local/bin. Can you guess why you can’t do this?

7. Exercise with the vi editor to write the following code into a file called myscript.pl. This code is your first PERL program:

#!/usr/local/bin/perl

print “hello world\n”;

print “Hey! I did it!\n”;

8. Execute your script by typing ./myscript.pl

9. It didn’t execute, right? It will not execute until you make it executable.

10. Make your PERL file executable with the command “chmod 755 myscript.pl”

11. Use the ls command with “-l” option to check whether the myscript file has access right setting of rwxr-xr-x.

12. Execute your PERL program.

13. Send a mail to ctp203@lists.bilkent.edu.tr if you manage to execute your PERL script successfully.

HOMEWORK:

Learn UNIX file access control bits. I recommend you use altavista.com search engine with search keywords : “UNIX file access control chmod”. You will have a surprise quiz on this!

vi REFERENCE (by maart@cs.vu.nl)

Warning: some vi versions don't support the more esoteric features described in this document. You can edit/redistribute this document

freely, as long as you don't make false claims on original authorship.

 default values : 1

 ^X : <ctrl>x

 [*] : `*' is optional

 <*> : `*' must not be taken literally

 <sp> : space

 <cr> : carriage return

 <lf> : linefeed

 <ht> : horizontal tab

 <esc> : escape

 <erase> : your erase character

 <kill> : your kill character

 <intr> : your interrupt character

 <a-z> : an element in the range

 N : number (`*' = allowed, `-' = not appropriate)

 CHAR : char unequal to <ht>|<sp>

 WORD : word followed by <ht>|<sp>|<lf>

 /////////////////

 / move commands /

 /////////////////

 N | Command | Meaning

 ---+--------------------+---

 * | h | ^H | <erase> | <*> chars to the left.

 * | j | <lf> | ^N | <*> lines downward.

 * | l | <sp> | <*> chars to the right.

 * | k | ^P | <*> lines upward.

 * | $ | To the end of line <*> from the cursor.

 - | ^ | To the first CHAR of the line.

 * | _ | To the first CHAR <*> - 1 lines lower.

 * | - | To the first CHAR <*> lines higher.

 * | + | <cr> | To the first CHAR <*> lines lower.

 - | 0 | To the first char of the line.

 * | | | To column <*> (<ht>: only to the endpoint).

 * | f<char> | <*> <char>s to the right (find).

 * | t<char> | Till before <*> <char>s to the right.

 * | F<char> | <*> <char>s to the left.

 * | T<char> | Till after <*> <char>s to the left.

 * | ; | Repeat latest `f'|`t'|`F'|`T' <*> times.

 * | , | Idem in opposite direction.

 * | w | <*> words forward.

 * | W | <*> WORDS forward.

 * | b | <*> words backward.

 * | B | <*> WORDS backward.

 * | e | To the end of word <*> forward.

 * | E | To the end of WORD <*> forward.

 * | G | Go to line <*> (default EOF).

 * | H | To line <*> from top of the screen (home).

 * | L | To line <*> from bottom of the screen (last).

 - | M | To the middle line of the screen.

 * |) | <*> sentences forward.

 * | (| <*> sentences backward.

 * | } | <*> paragraphs forward.

 * | { | <*> paragraphs backward.

 - |]] | To the next section (default EOF).

 - | [[| To the previous section (default begin of file).

 - | `<a-z> | To the mark.

 - | '<a-z> | To the first CHAR of the line with the mark.

 - | `` | To the cursor position before the latest absolute

 | jump (of which are examples `/' and `G').

 - | '' | To the first CHAR of the line on which the cursor

 | was placed before the latest absolute jump.

 - | /<string> | To the next occurrence of <string>.

 - | ?<string> | To the previous occurrence of <string>.

 - | n | Repeat latest `/'|`?' (next).

 - | N | Idem in opposite direction.

 - | % | Find the next bracket and go to its match

 | (also with `{'|`}' and `['|`]').

 /////////////////////////

 / searching (see above) /

 /////////////////////////

 :ta <name> | Search in the tags file where <name> is

 | defined (file, line), and go to it.

 ^] | Use the name under the cursor in a `:ta' command.

 :[x,y]g/<string>/<cmd> | Search globally [from line x to y] for <string>

 | and execute the `ex' <cmd> on each occurrence.

 :[x,y]v/<string>/<cmd> | Execute <cmd> on the lines that don't match.

 ///////////////////

 / undoing changes /

 ///////////////////

 u | Undo the latest change.

 U | Undo all changes on a line, while not having

 | moved off it (unfortunately).

 :q! | Quit vi without writing.

 :e! | Re-edit a messed-up file.

 ///////////////////////////////////

 / appending text (end with <esc>) /

 ///////////////////////////////////

 * | a | <*> times after the cursor.

 * | A | <*> times at the end of line.

 * | i | <*> times before the cursor (insert).

 * | I | <*> times before the first CHAR of the line

 * | o | On a new line below the current (open).

 | The count is only useful on a slow terminal.

 * | O | On a new line above the current.

 | The count is only useful on a slow terminal.

 * | ><move> | Shift the lines described by <*><move> one

 | shiftwidth to the right (layout!).

 * | >> | Shift <*> lines one shiftwidth to the right.

 * | ["<a-z1-9>]p | Put the contents of the (default undo) buffer

 | <*> times after the cursor.

 | A buffer containing lines is put only once,

 | below the current line.

 * | ["<a-z1-9>]P | Put the contents of the (default undo) buffer

 | <*> times before the cursor.

 | A buffer containing lines is put only once,

 | above the current line.

 * | . | Repeat previous command <*> times.

 | If the last command before a `.' command

 | references a numbered buffer, the buffer number

 | is incremented first (and the count is ignored):

 |

 | "1pu.u.u.u.u - `walk through' buffers 1

 | through 5

 | "1P.... - restore them

 /////////////////

 / deleting text /

 /////////////////

 Everything deleted can be stored into a buffer. This is achieved by

 putting a `"' and a letter <a-z> before the delete command. The

 deleted text will be in the buffer with the used letter. If <A-Z>

 is used as buffer name, the adjugate buffer <a-z> will be augmented

 instead of overwritten with the text. The undo buffer always

 contains the latest change. Buffers <1-9> contain the latest 9

 LINE deletions (`"1' is most recent).

 * | x | Delete <*> chars under and after the cursor.

 * | X | <*> chars before the cursor.

 * | d<move> | From begin to endpoint of <*><move>.

 * | dd | <*> lines.

 - | D | The rest of the line.

 * | <<move> | Shift the lines described by <*><move> one

 | shiftwidth to the left (layout!).

 * | << | Shift <*> lines one shiftwidth to the left.

 * | . | Repeat latest command <*> times.

 //////////////////////////////////

 / changing text (end with <esc>) /

 //////////////////////////////////

 * | r<char> | Replace <*> chars by <char> - no <esc>.

 * | R | Overwrite the rest of the line,

 | appending change <*> - 1 times.

 * | s | Substitute <*> chars.

 * | S | <*> lines.

 * | c<move> | Change from begin to endpoint of <*><move>.

 * | cc | <*> lines.

 * | C | The rest of the line and <*> - 1 next lines.

 * | =<move> | If the option `lisp' is set, this command

 | will realign the lines described by <*><move>

 | as though they had been typed with the option

 | `ai' set too.

 - | ~ | Switch lower and upper cases.

 * | J | Join <*> lines (default 2).

 * | . | Repeat latest command <*> times (`J' only once).

 - | & | Repeat latest `ex' substitute command, e.g.

 | `:s/wrong/good'.

 - | :[x,y]s/<p>/<r>/<f>| Substitute (on lines x through y) the pattern

 | <p> (default the last pattern) with <r>. Useful

 | flags <f> are `g' for `global' (i.e. change every

 | non-overlapping occurrence of <p>) and `c' for

 | `confirm' (type `y' to confirm a particular

 | substitution, else <cr>). Instead of `/' any

 | punctuation CHAR unequal to <lf> can be used as

 | delimiter.

 ///////////////////////////////////

 / substitute replacement patterns /

 ///////////////////////////////////

 The basic meta-characters for the replacement pattern are `&' and `~';

 these are given as `\&' and `\~' when nomagic is set. Each instance

 of `&' is replaced by the characters which the regular expression

 matched. The meta-character `~' stands, in the replacement

 pattern, for the defining text of the previous replacement

 pattern. Other meta-sequences possible in the replacement pattern

 are always introduced by the escaping character `\'. The sequence

 `\n' (with `n' in [1-9]) is replaced by the text matched by the

 n-th regular subexpression enclosed between `\(' and `\)'. The

 sequences `\u' and `\l' cause the immediately following character

 in the replacement to be converted to upper- or lower-case

 respectively if this character is a letter. The sequences `\U' and

 `\L' turn such conversion on, either until `\E' or `\e' is

 encountered, or until the end of the replacement pattern.

 //////////////////////////////

 / remembering text (yanking) /

 //////////////////////////////

 With yank commands you can put `"<a-z>' before the command, just as

 with delete commands. Otherwise you only copy to the undo buffer.

 The use of buffers <a-z> is THE way of copying text to another

 file; see the `:e <file>' command.

 * | y<move> | Yank from begin to endpoint of <*><move>.

 * | yy | <*> lines.

 * | Y | Idem (should be equivalent to `y$' though).

 - | m<a-z> | Mark the cursor position with a letter.

 //

 / commands while in append|change mode /

 //

 ^@ | If typed as the first character of the

 | insertion, it is replaced with the previous

 | text inserted (max. 128 chars), after which

 | the insertion is terminated.

 ^V | Deprive the next char of its special meaning

 | (e.g. <esc>).

 ^D | One shiftwidth to the left.

 0^D | Remove all indentation on the current line

 | (there must be no other chars on the line).

 ^^D | Idem, but it is restored on the next line.

 ^T | one shiftwidth to the right

 ^H | <erase> | One char back.

 ^W | One word back.

 <kill> | Back to the begin of the change on the

 | current line.

 <intr> | like <esc>.

 ///

 / writing, editing other files, and quitting vi /

 ///

 In `:' `ex' commands `%' denotes the current file, `#' is a synonym for

 the alternate file (which normally is the previous file).

 Marks can be used for line numbers too: '<a-z>.

 In the `:w'|`:f'|`:cd'|`:e'|`:n' commands shell meta-characters can be

 used.

 :q | Quit vi, unless the buffer has been changed.

 :q! | Quit vi without writing.

 ^Z | Suspend vi.

 :w | Write the file.

 :w <name> | Write to the file <name>.

 :w >> <name> | Append the buffer to the file <name>.

 :w! <name> | Overwrite the file <name>.

 :x,y w <name> | Write lines x through y to the file <name>.

 :wq | Write the file and quit vi; some versions quit

 | even if the write was unsuccessful!

 | Use `ZZ' instead.

 ZZ | Write if the buffer has been changed, and

 | quit vi. If you have invoked vi with the `-r'

 | option, you'd better write the file

 | explicitly (`w' or `w!'), or quit the

 | editor explicitly (`q!') if you don't want

 | to overwrite the file - some versions of vi

 | don't handle the `recover' option very well.

 :x [<file>] | Idem [but write to <file>].

 :x! [<file>] | `:w![<file>]' and `:q'.

 :pre | Preserve the file - the buffer is saved as if

 | the system had just crashed; for emergencies,

 | when a `:w' command has failed and you don't

 | know how to save your work (see `vi -r').

 :f <name> | Set the current filename to <name>.

 :cd [<dir>] | Set the working directory to <dir>

 | (default home directory).

 :cd! [<dir>] | Idem, but don't save changes.

 :e [+<cmd>] <file> | Edit another file without quitting vi - the

 | buffers are not changed (except the undo

 | buffer), so text can be copied from one file to

 | another this way. [Execute the `ex' command

 | <cmd> (default `$') when the new file has been

 | read into the buffer.] <cmd> must contain no

 | <sp> or <ht>. See `vi startup'.

 :e! [+<cmd>] <file> | Idem, without writing the current buffer.

 ^^ | Edit the alternate (normally the previous) file.

 :rew | Rewind the argument list, edit the first file.

 :rew! | Idem, without writing the current buffer.

 :n [+<cmd>] [<files>] | Edit next file or specify a new argument list.

 :n! [+<cmd>] [<files>] | Idem, without writing the current buffer.

 :args | Give the argument list, with the current file

 | between `[' and `]'.
 ////////////////////

 / display commands /

 ////////////////////

 ^G | Give file name, status, current line number

 | and relative position.

 ^L | Refresh the screen (sometimes `^P' or `^R').

 ^R | Sometimes vi replaces a deleted line by a `@',

 | to be deleted by `^R' (see option `redraw').

 [*]^E | Expose <*> more lines at bottom, cursor

 | stays put (if possible).

 [*]^Y | Expose <*> more lines at top, cursor

 | stays put (if possible).

 [*]^D | Scroll <*> lines downward

 | (default the number of the previous scroll;

 | initialization: half a page).

 [*]^U | Scroll <*> lines upward

 | (default the number of the previous scroll;

 | initialization: half a page).

 [*]^F | <*> pages forward.

 [*]^B | <*> pages backward (in older versions `^B' only

 | works without count).

 If in the next commands the field <wi> is present, the windowsize

 will change to <wi>. The window will always be displayed at the

 bottom of the screen.

 [*]z[wi]<cr> | Put line <*> at the top of the window

 | (default the current line).

 [*]z[wi]+ | Put line <*> at the top of the window

 | (default the first line of the next page).

 [*]z[wi]- | Put line <*> at the bottom of the window

 | (default the current line).

 [*]z[wi]. | Put line <*> in the centre of the window

 | (default the current line).

 ////////////////////////////

 / mapping and abbreviation /

 ////////////////////////////

 When mapping take a look at the options `to' and `remap' (below).

 :map <string> <seq> | <string> is interpreted as <seq>, e.g.

 | `:map ^C :!cc %^V<cr>' to compile from within vi

 | (vi replaces `%' with the current file name).

 :map | Show all mappings.

 :unmap <string> | Deprive <string> of its mapping. When vi

 | complains about non-mapped macros (whereas no

 | typos have been made), first do something like

 | `:map <string> Z', followed by `:unmap <string>'

 | (`Z' must not be a macro itself), or switch to

 | `ex' mode first with `Q'.

 :map! <string> <seq> | Mapping in append mode, e.g.

 | `:map! \be begin^V<cr>end;^V<esc>O<ht>'.

 | When <string> is preceded by `^V', no

 | mapping is done.

 :map! | Show all append mode mappings.

 :unmap! <string> | Deprive <string> of its mapping (see `:unmap').

 :ab <string> <seq> | Whenever in append mode <string> is preceded and

 | followed by a breakpoint (e.g. <sp> or `,'), it

 | is interpreted as <seq>, e.g. `:ab p procedure'.

 | A `^V' immediately following <string> inhibits

 | expansion.

 :ab | Show all abbreviations.

 :unab <string> | Do not consider <string> an abbreviation

 | anymore (see `:unmap').

 @<a-z> | Consider the contents of the named register a

 | command, e.g.:

 | o0^D:s/wrong/good/<esc>"zdd

 | Explanation:

 | o - open a new line

 | 0^D - remove indentation

 | :s/wrong/good/ - this input text is an

 | `ex' substitute command

 | <esc> - finish the input

 | "zdd - delete the line just

 | created into register `z'

 | Now you can type `@z' to substitute `wrong'

 | with `good' on the current line.

 @@ | Repeat last register command.

/////////////////////////////

 / switch and shell commands /

 /////////////////////////////

 Q | ^\ | <intr><intr> | Switch from vi to `ex'.

 : | An `ex' command can be given.

 :vi | Switch from `ex' to vi.

 :sh | Execute a subshell, back to vi by `^D'.

 :[x,y]!<cmd> | Execute a shell <cmd> [on lines x through y;

 | these lines will serve as input for <cmd> and

 | will be replaced by its standard output].

 :[x,y]!! [<args>] | Repeat last shell command [and append <args>].

 :[x,y]!<cmd> ! [<args>] | Use the previous command (the second `!') in a

 | new command.

 [*]!<move><cmd> | The shell executes <cmd>, with as standard

 | input the lines described by <*><move>,

 | next the standard output replaces those lines

 | (think of `cb', `sort', `nroff', etc.).

 [*]!<move>!<args> | Append <args> to the last <cmd> and execute it,

 | using the lines described by the current

 | <*><move>.

 [*]!!<cmd> | Give <*> lines as standard input to the

 | shell <cmd>, next let the standard output

 | replace those lines.

 [*]!!! [<args>] | Use the previous <cmd> [and append <args> to it].

 :x,y w !<cmd> | Let lines x to y be standard input for <cmd>

 | (notice the <sp> between `w' and `!').

 :r!<cmd> | Put the output of <cmd> onto a new line.

 :r <name> | Read the file <name> into the buffer.

 //////////////

 / vi startup /

 //////////////

 vi [<files>] | Edit the files, start with the first page of

 | the first file.

 The editor can be initialized by the shell variable `EXINIT', which

 looks like:

 EXINIT='<cmd>|<cmd>|...'

 <cmd>: set options

 map ...

 ab ...

 export EXINIT (in the Bourne shell)

 However, the list of initializations can also be put into a file.

 If this file is located in your home directory, and is named `.exrc'

 AND the variable `EXINIT' is NOT set, the list will be executed

 automatically at startup time. However, vi will always execute the

 contents of a `.exrc' in the current directory, if you own the file.

 Else you have to give the execute command yourself:

 :source file

 or

 :so file

 On-line initializations can be given with `vi +<cmd> file', e.g.:

 vi +x file | The cursor will immediately jump to line x

 | (default last line).

 vi +/<string> file | ~ to the first occurrence of <string>.

 You can start at a particular tag with:

 vi -t <tag> | Start in the right file in the right place.

 Sometimes (e.g. if the system crashed while you were editing) it is

 possible to recover files lost in the editor by `vi -r file'. If

 you just want to view a file by using vi, and you want to avoid any

 change, instead of vi you can use the `view' or `vi -R' command:

 the option `readonly' will be set automatically (with `:w!' you can

 override this option).

 //////////////////////////////

 / the most important options /

 //////////////////////////////

 ai | autoindent - In append mode after a <cr> the

 | cursor will move directly below the first

 | CHAR on the previous line. However, if the

 | option `lisp' is set, the cursor will align

 | at the first argument to the last open list.

 aw | autowrite - Write at every shell escape.

 | (useful when compiling from within vi)

 dir=<string> | directory - The directory for vi to make

 | temporary files (default `/tmp').

 eb | errorbells - Beeps when you goof

 | (not on every terminal).

 ic | ignorecase - No distinction between upper and

 | lower cases when searching.

 lisp | Redefine the following commands:

 | `(', `)' - move backward (forward) over

 | S-expressions

 | `{', `}' - idem, but don't stop at atoms

 | `[[', `]]' - go to previous (next) line

 | beginning with a `('

 | See option `ai'.

 list | <lf> is shown as `$', <ht> as `^I'.

 magic | If this option is set (default), the chars `.',

 | `[' and `*' have special meanings within search

 | and `ex' substitute commands. To deprive such a

 | char of its special function it must be preceded

 | by a `\'. If the option is turned off it's just

 | the other way around. Meta-chars:

 | ^<string> - <string> must begin the line

 | <string>$ - <string> must end the line

 | . - matches any char

 | [a-z] - matches any char in the range

 | [<string>] - matches any char in <string>

 | [^<string>] - matches any char not in <string>

 | <char>* - 0 or more <char>s

 | \<<string>\> - <string> must be a word

 nu | number - Numbers before the lines.

 para=<string> | paragraphs - Every pair of chars in <string> is

 | considered a paragraph delimiter nroff macro

 | (for `{' and `}'). A <sp> preceded by a `\'

 | indicates the previous char is a single letter

 | macro. `:set para=P\ bp' introduces `.P' and

 | `.bp' as paragraph delimiters. Empty lines and

 | section boundaries are paragraph boundaries too.

 redraw | The screen remains up to date.

 remap | If on (default), macros are repeatedly

 | expanded until they are unchanged.

 | Example: if `o' is mapped to `A', and `A'

 | is mapped to `I', then `o' will map to `I'

 | if `remap' is set, else it will map to `A'.

 report=<*> | Vi reports whenever e.g. a delete

 | or yank command affects <*> or more lines.

 ro | readonly - The file is not to be changed.

 | However, `:w!' will override this option.

 sect=<string> | sections - Gives the section delimiters (for `[['

 | and `]]'); see option `para'. A `{' beginning a

 | line also starts a section (as in C functions).

 sh=<string> | shell - The program to be used for shell escapes

 | (default `$SHELL' (default `/bin/sh')).

 sw=<*> | shiftwidth - Gives the shiftwidth (default 8

 | positions).

 sm | showmatch - Whenever you append a `)', vi shows

 | its match if it's on the same page; also with

 | `{' and `}'. If there's no match, vi will beep.

 terse | Short error messages.

 to | timeout - If this option is set, append mode

 | mappings will be interpreted only if they're

 | typed fast enough.

 ts=<*> | tabstop - The length of a <ht>; warning: this is

 | only IN the editor, outside of it <ht>s have

 | their normal length (default 8 positions).

 wa | writeany - No checks when writing (dangerous).

 warn | Warn you when you try to quit without writing.

 wi=<*> | window - The default number of lines vi shows.

 wm=<*> | wrapmargin - In append mode vi automatically

 | puts a <lf> whenever there is a <sp> or <ht>

 | within <wm> columns from the right margin.

 ws | wrapscan - When searching, the end is

 | considered `stuck' to the begin of the file.

 :set <option> | Turn <option> on.

 :set no<option> | Turn <option> off.

 :set <option>=<value> | Set <option> to <value>.

 :set | Show all non-default options and their values.

 :set <option>? | Show <option>'s value.

 :set all | Show all options and their values.

 /////////////////

 / contributions /

 /////////////////

 Maarten Litmaath <maart@cs.vu.nl>

 Rich Salz <rsalz@bbn.com>

 Eamonn McManus <emcmanus@cs.tcd.ie>

 Diomidis Spinellis <diomidis%ecrcvax.uucp@pyramid.pyramid.com>

 Blair P. Houghton <bph@buengc.bu.edu>

 Rusty Haddock <{uunet,att,rutgers}!mimsy.umd.edu!fe2o3!rusty>

 Panos Tsirigotis <panos@boulder.colorado.edu>

 David J. MacKenzie <djm@wam.umd.edu>

 Kevin Carothers <kevin@ttidca.tti.com>

 Dan Mercer <mercer@ncrcce.StPaul.NCR.COM>

CTP203 Lab Guide 1

